WV

C A C H A N

LOCALLY OPTIMAL
LOAD BALANCING

Laurent Feuilloley (laurent.feuilloley@ens-cachan.fr)

Aalto University

This poster presents part of the results of my ARPE. This work has been done during a visit at Aalto University in
Helsinki, in automn-winter 2014, under the supervision of Jukka Suomela and with Juho Hirvonen. It be will presented at
the conference DISC in October 2015. We present the ideas of the paper, avoiding the technicalities.

Load balancing is a well-studied subject, that paradox-
ically had not been investigated from the point of view of
local distributed computing. This work present the first re-
sults on this matter.

Computational problem :

Input : A line of processors, with their loads represented by
tokens. The maximum load is L.

Task : Balance the load such that two adjacent processors
have a load difference of at most one token.

[[[
[[[
.]]]] [[
Input: = = = - = = = -
]]]]]]]]
G:. O—/CO—"COC—"OCO—~OCO—~OC—COC—OCO—~0C—0C—0C—-—0
[[
output: 3§ § 3 3§ & & 38 8 § = = &=
]]]]]]]]]]]]
G:. —0O—"0O——"OCO—"OC5—"OC—C—"—OC—"0C5——C——C-O

MODEL AND COMPLEXITY MEASURE

We use the local model of distributed computing.
e Every processor is a computing machine.

e There are rounds of communication, and the messages
travel between the processors with the speed of one
edge per round.

e The edges have port numbers.

The measure of the complexity (that we want to min-
imise) is the number of rounds of communication needed to
balance the load. Basically we want the computation to be
as local as possible.

MATCH-AND-BALANCE ALGORITHMS

The most natural idea of algorithm is to balance the load
between neighbours repeatedly.

We show in the paper that this strategy is not very effi-
cient in general.

We propose an algorithm with complexity O(L). The

principle is to push the tokens along the descending diago-
nals. We push to the right (see the figure below), and then
to the left.

O0000d 00000004
DDDDD@Q\ DD[EL‘DDD3
DDDD@@@DD@@&DDDZ
OO0 W @ @ @ @ @ @ W @O @ 0]
1%
Lpush < L
00000000000 04ao4
O0000m0000004a0os3
O000 W @@ wewwddwdo?2
OO0 W @ @ @ W W W @ @ O]

The algorithm is actually more complex, because we
need to simulate a global orientation.

CONE ALGORITHM

It is difficult to generalise the push algorithm to larger
graph classes. Therefore we build a new algorithm. We say
that a token is stable if the positions in its downward cone

are full.
ii: H B

The disks are empty positions, the yellow token is unstable, the
blue one is stable.

Algorithm :
For a level ¢ from L down to 0:
For every token at the level 7 :
If it is stable, do not move it.
It it is unstable, try to place it in a free position
of its downward cone.

The red line is the level i, the yellow tokens are the ones that are
moving, the blue token is stable at its final position.

Placing a token in a free position requires coordination,
which boils down to bipartite maximal matching. The com-
plexity of this problem in general graphs is a long-standing
open problem.

Note: the two black and white pictures were designed by Jukka Suomela.

