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Constraint Satisfaction Problems
Let Γ be a structure. The constraint satisfaction problem of Γ, CSP(Γ),
is the problem of deciding given a finite system of constraints over the
variables x1, . . . , xn if there exist elements v1, . . . , vn in Γ that satisfy
all the constraints.

Clones
A set C of functions of finite arity on a set X is a function clone if:
• all the projections p

(n)
i : (x1, . . . , xn) 7→ xi are in C for n ∈ N and 1 ≤ i ≤ n,

• C is closed under composition.
By endowing a function clone with the topology of pointwise convergence, one gets a topological clone.

Example
Let Kr be the complete graph on r vertices. Then CSP(Kr) is the r-colourability
problem: the variables represent vertices of the input graph, and the constraints
are “no two adjacent nodes can be mapped to the same vertex of Kr (i.e., to the
same colour)”.

Fig. 1: CSP(K3) is the 3-colourability problem.

Polymorphism Clones
Let D be a set, R ⊆ Dn be an n-ary relation on D and f : Dm → D be an m-ary function on
D. We say that f preserves R if for all tuples (a11, . . . , a1n), . . . , (am1, . . . , amn) in R, the tuple
(f (a11, . . . , am1), . . . , f (a1n, . . . , amn)) is in R (see Figure 2).

(a11 a12 . . . a1n) ∈ R
...

(am1 am2 . . . amn) ∈ R
↓ ↓ . . . ↓

(f (a11, . . . , am1) f (a12, . . . , am2) . . . f (a1n, . . . , amn)) ∈ R
Fig. 2: Preservation of relations under an operation

A function f is a polymorphism of a structure Γ if f preserves all the relations of Γ.
Fact. The set of polymorphisms of a structure is a function clone, denoted by Pol(Γ). It is
furthermore a closed subset of the set of all finitary functions under the topology of pointwise
convergence.

Connecting Computational Complexity and the Study of Clones

There are decision problems that cannot be formulated as the CSP of a structure with a
finite domain. However, we can often formulate these problems as the CSP of structures
which are ω-categorical: a structure Γ is ω-categorical when every structure ∆ that
satisfies the same first-order properties as Γ is isomorphic to Γ. In particular, every finite
structure is ω-categorical.
A clone homomorphism from a clone C to a clone D is a function ξ that maps p

(n)
i to p

(n)
i

for all n ∈ N and 1 ≤ i ≤ n and such that

ξ(f ◦ (g1, . . . , gn)) = ξ(f ) ◦ (ξ(g1), . . . , ξ(gn)).

Theorem 1 ([BP14]).Let Γ,∆ be two ω-categorical structures. If there is a contin-
uous clone homomorphism ξ : Pol(Γ)→ Pol(∆), then CSP(∆) reduces in polynomial
time to CSP(Γ).

The clone 2 is the smallest function clone on the set {0, 1}: it only contains the projections.
This clone is the polymorphism clone of every NP-hard CSP on two elements (assuming P 6=
NP). A clone homomorphism from a clone C to 2 is called a projective clone homomorphism.

Corollary 2 (Corollary of Theorem 1).Let Γ be an ω-categorical structure. If there is
a continuous projective homomorphism ξ : Pol(Γ)→ 2, then CSP(Γ) is NP-hard.

It is conjectured that for a very general class of structures, having a continuous projective
homomorphism is the only source of intractability.
Our first result confirms this conjecture for a wide class of infinite structures. Our sec-
ond result uses CSP-related techniques to study the model-checking problem for the logic
MMSNP.

The Complexity of First-Order Reducts of (N; 0)

Let Γ be a structure whose domain is N and whose relations can all be expressed by first-order formulas in (N; 0). Such a structure is called a first-order reduct of (N; 0). Examples of
problems that can be expressed as the CSP of a first-order reduct of (N; 0) are all the boolean CSPs, and all the equality constraint languages.

Theorem 3 ([BBM]).Let Γ be a first-order reduct of (N; 0). Then CSP(Γ) is in P or NP-complete.

Our proof works by studying the polymorphism clones of reducts of (N; 0) and by finding algorithms in the case where the clones do not have a continuous projective homomorphism.

A Dichotomy Theorem for a Fragment of MMSNP

A second-order existential formula φ is in MMSNP if it is of the form ∃U1, . . . , Uk ∀xφ(U, x)
where φ is a quantifier-free formula where all the symbols other than U1, . . . , Uk appear
negatively, and φ does not contain = or 6=. It is conjectured [FV99] that for every formula
φ in MMSNP, the problem of deciding A |= φ given a finite structure A is in P or NP-
complete (while if P 6= NP, there are decision problems with intermediate complexity), i.e.,
that MMSNP exhibits a complexity dichotomy.

With each MMSNP formula we can associate a coloured obstruction set F , which is a finite
set of coloured structures such that G |= φ iff there exists a colouring G∗ of G such that
F 6→ G∗ for every F ∈ F .

Theorem 4 ([BM15]).Let φ be a formula in MMSNP. Suppose that φ has a coloured
obstruction set that is 2-connected and monochromatic. Then the model-checking
problem for φ is polynomial-time solvable or NP-complete. Moreover, verifying if the
model-checking problem for φ is in P is decidable.
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